
LAWRENCE

N AT I O N A L

LABORATORY

LIVERMORE

December 9, 2002

Principles and Practices of Parallel Pro
California, June 11-13, 2003

J. May and J. Gyllenhaal

Tool Gear: Infrastru
Building Parallel
Programming Tools

UCRL-JC-147901
gramming, San Diego,

cture for

 DISCLAIMER

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

 This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

 This report has been reproduced directly from the best available copy.

 Available electronically at http://www.doc.gov/bridge

 Available for a processing fee to U.S. Department of Energy
 And its contractors in paper from

 U.S. Department of Energy
 Office of Scientific and Technical Information

 P.O. Box 62
 Oak Ridge, TN 37831-0062
 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728

 E-mail: reports@adonis.osti.gov

 Available for the sale to the public from
 U.S. Department of Commerce

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900

 E-mail: orders@ntis.fedworld.gov
 Online ordering: http://www.ntis.gov/ordering.htm

 OR

 Lawrence Livermore National Laboratory
 Technical Information Department’s Digital Library

 http://www.llnl.gov/tid/Library.html

Tool Gear: Infrastructure for Building Parallel Programming Tools

John May and John Gyllenhaal
Lawrence Livermore National Laboratory

johnmay@llnl.gov, gyllen@llnl.gov

Abstract

Tool Gear is a software infrastructure for developing performance
analysis and other tools. Unlike existing integrated toolkits, which
focus on providing a suite of capabilities, Tool Gear is designed
to help tool developers create new tools quickly. It combines dy-
namic instrumentation capabilities with an efficient database and
a sophisticated and extensible graphical user interface. This paper
describes the design of Tool Gear and presents examples of tools
that have been built with it.

1 Introduction

Many tools are available to help developers of parallel programs
understand the performance and correctness of their codes. Exam-
ples include systems that show users the cost of message-passing
calls, the utilization of allocated memory, or the computational effi-
ciency of specific sections of a program. Despite this variety, many
more kinds of data could be collected, and new ways could be de-
vised for presenting it.

Researchers continue to develop new ideas for tools, but turning
an idea into a usable tool can be time consuming and tedious. Most
tool users are not satisfied with plain-text displays or command-line
interfaces. Creating sophisticated interfaces, though, can require as
much effort as building the fundamental mechanisms for gathering
and processing the data. Therefore, tool researchers themselves
need a set of tools they can use for building new tools.

There is more to this problem than just building graphical user
interfaces (GUIs): good systems for creating GUIs, such as Tcl/Tk
and Java, have existed for many years. General-purpose GUI
builders can make GUIs much easier to produce, but they don’t help
implement the underlying functionality that is common to many
parallel performance tools. This functionality includes launching
and controlling a target program; dynamically instrumenting the
program; collecting and organizing data in a database; and pre-
senting the data in useful ways, such as associating performance
information with specific lines of source code.

Individually, most of these problems have been solved before.
In fact, many of them have been solved repeatedly, and that is the
main motivation for the work described in this paper. Developers of
parallel tools need a tool-building infrastructure that provides com-
mon tool services so they don’t have to reimplement them for each
new tool. Tool Gear is a collection of programs and programming
interfaces that are designed to meet this need.

Wherever possible, we have taken advantage of existing open-
source software. Our own contribution has been to design higher-
level interfaces and to implement additional functionality. Specifi-
cally, we have:

• Designed and implemented a general-purpose client-server
structure for program analysis tools. This software includes a
server (or “Collector”) portion that controls and instruments
parallel or sequential programs, and a Client portion that
stores, analyzes, and presents program data. The two por-
tions can run on different computers, communicating through
a secure socket connection. Separating the functionality in
this way helps make the user interface highly responsive.

• Developed an extensible and sophisticated user interface that
displays hierarchical views of target programs, allows users
to insert and remove instrumentation easily, and annotates the
source code display with performance or other data.

• Designed and implemented an extensible program control and
data collection tool that tool builders can easily augment with
new types instrumentation.

Together, this software offers tool builders a straightforward
way to incorporate a variety of sophisticated features into their
tools. Our goal has been to simplify the implementation of the
most common features of parallel tools while offering researchers
the flexibility to gather and display many kinds of data. Because
Tool Gear source code is freely available, developers can adapt it
to meet their own needs.

It is important to distinguish between the Tool Gear infrastruc-
ture and the tools built with it. Although we describe the individ-
ual tools to illustrate what can be done with Tool Gear, the design
and development the Tool Gear infrastructure is the research focus
of this paper. Throughout this paper, the terms “Tool Gear” and
“infrastructure” refer to the general-purpose software we have de-
veloped, while “tool” refers to an individual tool built using Tool
Gear.

2 Related Work

Because Tool Gear aims to automate common features of parallel
programming tools, many Tool Gear functions have appeared in
other tools. However, unlike most parallel programming tools, the
focus of this work is on the infrastructure for gathering and pre-
senting information, and not on the kind of information gathered
or the specifics of the display. Therefore, this section will compare
Tool Gear mainly with other tool development environments, and
not with the many individual tools and toolkits that present specific
kinds of information.

Early examples of toolkits for building parallel tools in-
clude Voyeur [13] (created in 1989), PARADISE [7] (1991), and
POLKA [14] (1993). These toolkits helped automate the develop-
ment of visualizations for parallel programs. They did not support

1

code
Tool-specific

Communication

DatabaseDPCL

Communication

Data Files

socket

Collector

(optionally

through ssh)

Target Interface

Programming

Tool

Qt

Client

Program

Views

Figure 1: Tool Gear’s main components: a Collector, which includes dynamic instrumentation capability, and a Client, which stores data,
manages the GUI (through Qt), and lets tool builders define tool characteristics.

interactive control of the program, and users had to compile instru-
mentation into the target program.

One of this paper’s authors developed an extensible debugger
for parallel programs called Panorama [8]. This tool interacted
with target applications through standard command-line debuggers,
and users could build Tcl/Tk-based views with the help of an inter-
face development tool. Unlike Tool Gear, Panorama did not offer
a database for organizing program data, and it could only present
information that was available through the debugger. It focused on
program debugging rather than performance analysis.

An important advance in programming tools was the develop-
ment of dynamic instrumentation [6]. This technique was imple-
mented in a tool called Dyninst. It allows tool developers to insert
nearly any kind of instrumentation into an executable program at
runtime. Eliminating the need for compile-time decisions about
instrumentation gives users great flexibility to explore the perfor-
mance and correctness of their programs, and allowing tools to in-
sert and remove the instrumentation on the fly helps moderate the
volume of data collected. A later tool based on Dyninst is called
the Dynamic Probe Class Library (DPCL) [2]. Developed at IBM,
it has been released as open source, and Tool Gear uses it exten-
sively.

The current systems to which it is most natural to compare Tool
Gear are Paradyn [10, 12], SvPablo [3, 4], and TAU [11, 1].

Paradyn presents a graphical tree-structured display of a pro-
gram and allows users to choose program locations at which one
or more predefined performance metrics can be computed. New
metrics can be defined through a Paradyn Configuration Language,
and a Performance Consultant can search automatically for perfor-
mance bottlenecks.

SvPablo also uses dynamic instrumentation to gather data from
hardware performance counters for specified regions of code. A
source code viewer annotates source lines with performance infor-
mation, and data can be stored in Pablo’s extensible data format.

TAU is a suite of graphical performance tools that implement
function profiling, interval timing, hardware counter monitoring,
and related operations. TAU can use both dynamic instrumenta-
tion (through Dyninst) and compiled-in (source level) instrumen-
tation. However, users cannot insert instrumentation interactively;
they must specify what will be instrumented before the target pro-
gram is run.

Like Tool Gear, all these tools can gather and present perfor-

mance data from parallel programs using dynamic instrumentation.
All offer a variety of data views, and all are extensible, at least to
some extent.

However, Tool Gear is not intended to compete with these sys-
tems. Our goal is not to develop a single integrated toolkit (al-
though that could be done with Tool Gear); rather, we want to de-
velop a system by which tool developers can create individual new
tools with minimal effort. While it would also be possible for de-
velopers to add new functionality to one of these existing systems,
the resulting tool would likely include all the existing functionality
as well, and this functionality might be unnecessary or confusing in
the new tool. Furthermore, Tool Gear was designed from the start
to be a tool infrastructure rather than a specific tool, so it offers a
general-purpose foundation on which a wide range of tools can be
built. Our goal is to make using Tool Gear the fastest and easiest
way for developers to create new tools.

3 Tool Gear Components

Tool Gear has two major components: a Collector and a Client
(Figure 1). The Collector controls the target program and gathers
data from it. The Client manages the graphical user interface, ac-
cepts commands from the user, receives and stores data from the
Collector, and presents data. The Collector and Client run as sep-
arate processes, which can run on different computers. They com-
municate through a Unix socket, and when the two components
run on separate machines, the socket is forwarded through a Secure
Shell connection.

3.1 The Collector

The Collector runs on same computer as the target application and
gathers data from it. This program uses IBM’s Dynamic Probe
Class Library (DPCL) to control the target application, which may
be sequential or parallel. DPCL can start an application, pause and
resume it, and terminate it. DPCL can also insert and remove in-
strumentation at runtime. Using a simple DPCL instrumentation
module, it is also possible to implement a limited form of break-
points (see Section 5.1 for details.) We call this portion of Tool
Gear a “Collector,” and not a “server,” because this program is also
a client to a DPCL server. Rather than trying to distinguish the

2

Figure 2: Tool Gear’s Tree View interface displays the target program hierarchically. Here, a Fortran program called umt98 is shown with a
list of its source files. The user has chosen to expand two of these files (MB3D.f and doBlocks.f) to show the functions within. The rand4
function has been further expanded to show the source code. This screen shot, taken from a computer running Macintosh OS X, does not
show the tool’s main menus. These appear at the top of the screen on a Mac and at the top of the window on other platforms.

contexts in which the program is a client or a server, we gave it a
different name.

The Collector is spawned at the request of the Client, and once
these two processes have completed a handshake, the Collector acts
as the Client’s proxy, executing commands and relaying data back
to it. The Collector can also set the current working directory for
the target program and read its source files, if they are available.
Since the Collector can transmit source files to the Client on re-
quest, there is no need for these files to reside on the computer
where the Client is running.

Not all tools will take advantage of DPCL’s dynamic instrumen-
tation capabilities, but even for tools that use static (compiled-in)
instrumentation, the Collector will use DPCL to execute the target
program.

The exact details of the Collector’s interaction with the Client
will of course vary between tools, but in general, the Collector
will first describe to the Client the capabilities it supports and the
attributes (columns) of the database that the Client will manage.
Then it will describe the structure of the target program, giving a
list of files and functions and stating the number of processes. As
the Collector receives data from the instrumentation, it will forward
it to the Client, which will insert it in a database. The Collector can
gather data through DPCL, or by reading files that the target pro-
gram writes, or by any other means that the tool builder wishes
to implement. Section 4 describes how the Collector gathers data
from programs.

The program can be terminated at the Client’s request, or it can
run to completion, in which case the Collector will notify the Client
that the run has ended.

3.2 The Client

The Client handles a number of interrelated tasks for a tool. It
manages the user interface, receives and stores data, and presents
graphical displays.

At the heart of the Client is a database that stores the structure
of the target program, a list of actions defined by the tool that gather
data or otherwise interact with the program, and the data itself. This
database was originally written by one of this paper’s authors for
a compiler project [5], but it is well suited to Tool Gear’s needs.
Its main benefit is its high-speed insertion and retrieval. It is not
designed to manage disk-resident datasets, but we expect that lim-
iting data to what can fit in memory will not be a major drawback
for most tools. (Tools that generate very large trace files would
probably do best to preprocess these files before sending the results
to the Client database.)

The basic view of a target program that the Client presents to a
user is a hierarchical listing of source code. This is called a Tree
View (Figure 2.) When the target program first begins running, the
Tree View presents a list of the target’s source files. Clicking on a
file name displays the functions in that file, and clicking on a func-
tion name presents a source code listing, if one is available. If no
source code is available, the Tree View displays a list of program
locations that it knows about (normally, a list of function sites.)
Most executables include a number of system modules that are of
no interest to the user. Users can suppress the display of these mod-
ules by including their names in a file called parse_exclude in the
directory where the target program is running. Alternatively, a user
who wants to see only a few modules from a very large program can
list these in a file called parse_include. Using these files to sup-
press unwanted modules is effective but somewhat awkward, since
the tool user must create a new set of files for each target program.

3

#include <dpclExt.h>
#include <sys/time.h>

static struct timeval start;
void StartTimer()
{

gettimeofday(&start, NULL);
}

void StopTimer(AisPointer ais_send_handle)
{

struct timeval stop;
long sec, usec;
double result;

gettimeofday(&stop, NULL);
sec = stop.tv_sec - start.tv_sec;
usec = stop.tv_usec - start.tv_usec;
result = sec + usec / 1e6;
Ais_send(ais_send_handle, &result, sizeof(result));

}

Figure 3: The complete code for a simple implementation of interval timer instrumentation. A more sophisticated version (which we have
implemented) would maintain thread-specific stacks of start times so that timer calls could be nested and work correctly in multithreaded
programs. The call to Ais_send transmits the result to the Collector, which activates a user-defined callback function to process the data.

We are investigating more sophisticated and automated approaches,
such as allowing the user to suppress modules automatically when
no source information is available.

The database is organized as a hierarchy that matches this dis-
play. Tools gather data and associate it with specific locations in
the source code. The Tree View then displays this data in columns
at the appropriate location. The Tree View can “roll up” data from
lines into summaries for each function and file. It can also manage
data separately for individual threads and processes, or summarize
the data in ways specified by the tool or by the end user. Finally,
the user can sort the program listing by the values in any column of
the display. This could be used, for example, to find the code sec-
tions with the highest cache miss rates. (See Figure 7 for another
example.)

We expect that the Tree View display will be useful for a vari-
ety of tools. However, we are also implementing graphical views
that tools can use to present data in other forms. Furthermore, tool
designers can implement their own custom views by programming
them directly. Because data is stored centrally in the Client, and not
in any one view, the Client can notify the views as new data arrives.
This allows multiple views to keep themselves up to date simulta-
neously. Also, tools can spawn new views that show existing data
in different ways.

The Client can write the contents of its database into a snap-
shot file at the user’s request. These snapshots can be read back
into a new window so the user can refer to that data as the program
continues to run. A snapshot can also be used as a baseline for a dif-
ference display, which shows the difference between each current
value in the database and the corresponding value in the snapshot
file.

To create these GUI displays, we use a C++ graphical interface
package called Qt [15], developed by Trolltech. We chose Qt over
other GUI tools such as Java and Tcl/Tk because it combines a rich
set of features with good performance. Since we wanted to write
Tool Gear in C++, using Qt also avoided language interoperabil-
ity problems. Furthermore, Qt runs on a wide range of platforms,
including many Unix varieties, Windows, and Macintosh OS X. It
has a licensing option that permits free noncommercial use, so tool

developers using Tool Gear do not need to pay a Qt license fee.
An important advantage to running the Client on a separate

computer from the Collector is that it can manage the GUI locally.
The graphics updates don’t have to travel over a Secure Shell con-
nection, so the GUI is very responsive, even when communicating
with the Collector over low-bandwidth or encrypted connections.

In addition to the database and the viewers, the Client includes
a Tool Programming Interface that helps tools define what actions
users can perform on the target program. Section 4.3 describes how
tools use the TPI.

4 Building Tools

Building a tool using Tool Gear consists of three tasks:

• Writing instrumentation code that will run as part of the target
program.

• Writing code that tells the Collector about the instrumentation
and how to forward the data to the Client.

• Using the Tool Programming Interface to define how the user
can interact with the program and how the Client will display
the data it receives.

The following subsections describe these steps. Our software distri-
bution includes extensive documentation to assist developers with
this process, including recipes for building tools, example code,
and a complete set of Web pages that describe the programming
interface and all the source code.

4.1 Writing Instrumentation

Tools may use Tool Gear’s dynamic instrumentation capabilities
to insert the instrumentation at runtime, or they may include in-
strumentation libraries that are compiled and linked into the target
program.

To use dynamic instrumentation, the tool builder will write one
or more functions (usually in C or C++) that can execute within
the target program. These functions can do anything that a function

4

written as part of the target can do, but they are compiled separately
and they do not need to be linked into the target program. Instead,
the instrumentation functions for a tool are compiled into a separate
module called a probe module. Figure 3 shows a simple example of
instrumentation that implements an interval timer. The Tool Gear
documentation describes how this would be compiled into a probe
module.

To send data from the target program to the Collector, the probe
module functions use a DPCL function called Ais_send. This func-
tion transmits an arbitrary-size block of data to the Collector, which
invokes a callback function to handle this data, as described in Sec-
tion 4.2.1.

When a tool uses static instrumentation, tool developer must
arrange a way for the Collector to receive the data. The easiest
way to do this is for the instrumentation to write a file, which the
Collector reads at the appropriate time. For example, the Collector
can be programmed to call a function that reads a file after the target
program exits. Section 4.2.2 describes this technique.

4.2 Modifying the Collector

The second step in building a tool is to modify Tool Gear’s basic
Collector program to gather and process data. How this is done will
depend on whether the tool uses dynamic or static instrumentation.

4.2.1 Dynamic Instrumentation

When the tool uses dynamic instrumentation, the Collector’s job is
to cause DPCL to install specific functions from the probe module
at program locations chosen by the end user. The current version
of DPCL can install instrumentation only at specific locations in
the target program: function entry and exit points, and just before
or after any function call. These locations are called instrumenta-
tion points, and instrumentation that DPCL installs at one of these
points is called a point probe. DPCL can also cause instrumenta-
tion to be executed at specified time intervals (this is called a phase
probe) or exactly once (a one-shot probe.)

Tool Gear defines a set of C++ classes to encapsulate these
ideas. An action type represents an instrumentation function, and
a point action represents an action type that has been installed at
a specific instrumentation point. The same action type can be in-
stalled at multiple instrumentation points, and a single instrumenta-
tion point can accept multiple point probes. Tool Gear also defines
classes for phase probes and one-shot probes.

When defining an action type, the tool developer can specify the
callback function that will be invoked whenever the corresponding
instrumentation function transmits data by calling Ais_send. For
point probes, the callback can determine the instrumentation point
at which the function was called, so it can associate data with a
particular program location.

The main steps for modifying a Collector to use the new instru-
mentation are these:

• Instantiate a set of action types.

• Define the data attributes in the Client database. This in-
cludes naming the columns in the database and specifying
their types. Tool Gear includes functions for doing this from
the Collector.

• Define the callback functions that will receive the data from
the target program. These functions will forward this data to
the Client database. Again, Tool Gear includes functions for
doing this.

All of this can be done in a file that is linked to the Collector,
and the Collector’s main function can call an initialization func-
tion in this file to set up all the actions. (We have considered de-
signing the Collector to dynamically load the code that defines a
tool’s features, but we prefer to avoid the complexity and portabil-
ity problems that this approach would entail.) A Collector can link
in and call multiple sets of action initialization functions. This al-
lows a tool builder to incorporate some standard action types, such
as breakpoints and interval timers, along with the tool-specific ac-
tion types.

The Collector already includes the ability to find the instrumen-
tation points in a program, report them to the Client, and instantiate
point actions at the Client’s request. It can also instantiate point
actions for a set of instrumentation points that match a pattern cho-
sen by the user or the tool builder (such as, “entry to all functions
whose names start with MPI_”).

4.2.2 Static Instrumentation

Tools that rely on instrumentation that is compiled or linked di-
rectly into an application do not need to declare action types, but
they do need to declare Client database attributes, and they also
need to define at least one callback.

When the tool initializes itself in the Collector, it declares the
attributes in the usual way, and then instead of defining action types
and callbacks to be instantiated when data arrives from the pro-
gram, it declares a single callback that the Collector will execute
when the target program terminates. This routine can read a file
that the program’s instrumentation has written and forward the data
it collects to the Client using Tool Gear’s standard functions.

The instrumentation can choose a unique name for the file
based on the program name and Unix process id. This information
is also available to the Collector, so it can easily find the relevant
file. For parallel programs, the instrumentation may write all the
data to a single file, or it may write one file per process. The Col-
lector can handle both situations. When any process in a parallel
job terminates, DPCL invokes the callback and sends the process
id as a parameter. Therefore, the Collector can read individual files
as they are created. If only one file is created, it can be identified
with the process id of task zero in the parallel job, and the callback
can simply return when it is invoked for other processes in the job.

Tools that use dynamic instrumentation can easily determine
what part of a program generated a piece of data. This allows the
Collector to tell the Client database how to associate data with a
program’s source code. Tools that do not use dynamic instrumen-
tation must find another way to associate data with program loca-
tions. One method is for the instrumentation to decode the target
program’s symbol table information so that it can look up file, func-
tion, and line number information based on the program counter.
GNU libraries are available to help applications do this. The instru-
mentation then stores source location information in its output file
along with the data it collects. When the callback function in the
Collector reads this file, it must parse this information and declare
the files, functions, and program locations to the Client database. It
must also generate a unique tag for each program location. It will
use this tag when sending data, and the Client database will then
associate the data correctly with source code.

4.3 Creating the User Interface

The final step in defining a tool is to specify how the user will
request actions and how data will be displayed.

5

Insert "Start Timer" Remove "Start Timer"

Figure 4: Tool developers define state diagrams for each action using the Tool Programming Interface. Along with the basic states and
transitions, developers specify corresponding icons and menu text.

Insert "Start Timer"

Insert "Start Timer"

Remove "Start Timer"

Remove "Start Timer"

requested

confirmed

requested

confirmed

Figure 5: Tool Gear expands the basic state diagram that the tool developer declares to include transitional states. End users can initiate only
those transitions indicated by solid arrows, while the Collector can normally initiate only the transitions indicated by dashed lines. In error
conditions, the Client or Collector can force the system into any state.

4.3.1 Requesting Actions

Tool builders specify how to request actions through the Tool Pro-
gramming Interface. Our model for user interactions with target
programs is that each tool defines one or more actions that the user
can request, and each request is associated with a location in the
target program. (The “program locations” in the Client typically
represent DPCL instrumentation points. We use separate terms to
distinguish the objects that DPCL defines and manipulates on the
target computer from those that the Client uses to represent them.)
Examples of actions include inserting (or removing) some instru-
mentation or setting a breakpoint.

When a tool runs, tool-specific software makes calls to the Tool
Programming Interface to define a set of actions, along with asso-
ciated icons, menu entries, and help text. The tool also defines how
actions relate to each other by defining a state transition graph (see
Figure 4.) The tool uses this graph for all the program locations (or
a subset of them, depending on the tool), but the Client maintains
separate states for each location. The current state for a program
location determines what icon is displayed, what menu choices are
available to the user, and what help text is displayed when the cur-
sor passes over an icon. The tool also defines a default initial state.

Tool Gear can automatically expand the graph that the tool de-
fines to differentiate between requested actions and confirmed ac-
tions. It also defines additional transitions between the new states
(Figure 5.) Expanding the state diagram allows the display to show
different icons for requested and confirmed actions, so the user can
see when a pending action has been completed. As Figure 5 shows,
users can only initiate requests, while the Collector normally only
confirms them.

For example (again using Figure 5), when a tool starts up, each

program location will be in a default initial state of Remove “Start
Timer” confirmed, meaning that no instrumentation has been in-
serted yet. From here, the only transition that the user can initiate
for this action is to Insert “Start Timer” requested. Menu text
that appears when the user clicks on a program location will reflect
this choice, and choosing this text will cause a transition to that
state. The Client will then send the corresponding request to the
Collector update the icon displayed at the program location. From
this new state, the user now has the choice of requesting removal
of the (not yet confirmed) timer. Selecting this option would tell
the Collector to cancel the pending request. The Collector, mean-
while, can change the state to Insert “Start Timer” confirmed.
Each state transition causes the GUI to display the corresponding
tool-defined icon.

Now suppose that the user does request cancellation of a pend-
ing action. The state transition would be from Insert “Start
Timer” requested to Remove “Start Timer” requested. The Col-
lector will receive the cancellation request (which will look like an
ordinary request to remove the instrumentation). If the Collector
is single-threaded, it may not be possible to cancel the action in
progress. Therefore, the Collector will complete the insertion re-
quest and then immediately carry out the removal request. After
completing the first action, it will send a confirmation back to the
Client. At this point, the Client will be in the the Remove “Start
Timer” requested state, but the message will confirm an inser-
tion. Since there is no transition allowed from the current state
to to Insert “Start Timer” confirmed, the Client will ignore this
message, and the icon on the display will not change. Then when
the Client receives the removal confirmation, it will move to the
Remove “Start Timer” confirmed state, and the icon appropri-

6

ate icon will be displayed. We designed this behavior specifically
to avoid the potentially confusing situation that arises when a user
makes a request and then changes his mind: if the GUI updated the
icon after each confirmation arrived from the Collector, the display
would show that the request was confirmed after the user had can-
celled it. Then, a moment later, the display would show that the
request had indeed been cancelled. We prefer to avoid this inter-
mediate transition.

If the Collector cannot complete a request for some reason, it
can send a negative acknowledgment message. Since this is an error
condition, the Client can make a transition to any state. This allows
it to show the true current state of the request.

The expanded transition diagram also includes Collector-
initiated transitions between the confirmed states. When the user
requests an action to be inserted on a set of program locations in-
stead of one specific location, this transition allows the Collector
to confirm the action at each location, even though the user didn’t
issue requests for the individual program locations.

A tool may support several independent groups of actions (such
as inserting/removing instrumentation and setting/deleting break-
points). The state diagrams that the tool defines for these groups
of actions need not be connected. Thus, a program location can be
in several independent states at the same time, reflecting the status
of independent actions. The GUI automatically displays icons for
independent states next to each other and builds the menus appro-
priately. For example, if the “Start Timer” action had been inserted
at a particular location, clicking on that location might bring up a
menu with the options of removing the “Start Timer” action, re-
questing a “Stop Timer” action, and requesting a breakpoint.

Although our model may seem complex, it needs to meet sev-
eral needs:

• The user should be able to see the difference between a re-
quest and the outcome of a request. This corresponds to sep-
arating requested states from confirmed states.

• The user should not be able to force a program location into
a confirmed state. This corresponds to defining separate tran-
sitions for the user and the Collector.

• The user should be able to cancel a pending request and to
see the progress of the cancellation. This corresponds to al-
lowing user transitions between two different requested states
and omitting transitions from requested states to nonmatching
confirmed states.

• The display should be able to respond to confirmations of
multiple actions that were initiated by a single user request.
This corresponds to defining transitions between confirmed
states.

4.3.2 Using the Database

The second task in defining a user interface is determining how
data will be stored and displayed. When the Collector starts, tool-
specific initialization code sends requests to the Client to define
one or more columns in the database, as mentioned earlier. The
Client then automatically creates and labels these columns in the
Tree View. Later, when the Collector receives data from the target
program, it forwards it to the Client with information describing
the row and column where it should be stored in the database. New
values for a given cell can either replace existing ones or be added
to them.

For parallel programs, the database stores data for a given row
and column separately for each thread or process. The Tree View
display presents a single value for a cell, which can be (at the user’s

choice) the sum, mean, minimum, maximum, standard deviation,
or count of the values for that row and column. The tool can specify
which of these summary values is displayed by default for each
column. Placing the cursor over a value shows all the summary
data in a line at the bottom of the window.

The Tree View further summarizes data in each column by dis-
playing any one of the statistics mentioned above for the function,
file, and program. This could show, for example, the total time for
all functions that were instrumented in a program. Again, the user
can select which type of summary to display. The Client computes
all these values on the fly as data arrives in the database, so there is
no delay when the user chooses different values to display.

At present, we have only implemented the Tree View display.
However, we have begun to work on ways to present data graphi-
cally (in bar charts and pie charts, for example), and we expect to
include that capability in future versions of Tool Gear.

5 Tools Built with Tool Gear

We have built two prototype tools using the Tool Gear infrastruc-
ture. The first, called TGmpx, displays cache utilization and FLOP
data for selected sections of code (Figure 6.) It uses dynamic instru-
mentation. The second, called TGmpip, shows the cost of certain
MPI calls. It uses instrumentation linked in through MPI’s standard
profiling interface.

5.1 TGmpx

TGmpx uses data gathered by the MPX hardware counter multi-
plexing library [9]. This library collects data from hardware perfor-
mance counters, and on systems whose counter architecture would
otherwise prevent concurrent counting of certain combinations of
events, it uses time sharing to sample counters and extrapolate re-
sults. The MPX library also includes simple functions that can
be compiled into an application to report the cache utilization and
FLOP rate for specified section of code.

For the TGmpx tool, these functions were turned into DPCL
probe modules. We defined two action types: one to start the mea-
surement, and one to stop it and report the results. (We later added
an interval timer to this tool; Section 5.3 describes that feature.)
Starting the counters requires no callback function in the Collec-
tor. Stopping the counters invokes a callback in the Collector that
simply forwards the data values (cache hit rate, FLOP count, and
FLOP rate) back to the Client, along with a tag that identifies the
instrumentation point where the callback was invoked and a pro-
cess/thread identifier. The Client stores the data in the database and
presents the results on the appropriate source code line.

For this tool, we defined a third action type to implement sim-
ple breakpoints. When the user sets a breakpoint, DPCL installs an
instrumentation function that sends an empty message back to the
Collector and then puts the process to sleep for a short time. When
the callback in the Collector receives this message, it tells DPCL
to pause the program’s execution. The sleep call in the instrumen-
tation function gives the Collector time to receive the message and
call DPCL before the program continues to the next instruction.

The Client’s Tree View display marks program locations with
dotted boxes, and users can pop up a menu at any of these loca-
tions to install one of the three action types. A corresponding icon
will then appear at that location. In Figure 6, the icon that appears
before the function names indicates a request to start the counters,
and the icon after the function names indicates a request to stop the
counters and report results.

Figure 6 shows data for an eight-process parallel program. The

7

Figure 6: The TGmpx tool shows cache utilization and FLOP rates for selected regions of code in an eight-process parallel program. Here,
three function calls have been instrumented (at runtime), and resulting data is shown on the corresponding source lines. A statistical summary
of the cell under the cursor appears at the bottom of the display.

tool also works for sequential programs and multithreaded pro-
grams.

All of the display capability is built into the Tool Gear infras-
tructure. This includes not only the features described so far but
also the ability to search in the source code, customizable tool tips
that present help text for various elements of the display, and a pro-
grammable “About...” box. The parts of the user interface that are
unique to TGmpx are the icons, the menu text (not shown here),
and the column labels.

The Tree View’s collapsible display not only makes the source
code for a large program easier to navigate, it also improves perfor-
mance. The Client doesn’t ask the Collector for a list of functions
in a file until the user clicks on the file name to open that display,
nor does it request instrumentation points or source code until the
user asks to see them. This approach greatly improves the scal-
ability of the system, since it eliminates the delays (up to several
minutes) that would occur if the Tree View requested all the infor-
mation from a large executable at once.

5.2 TGmpip

TGmpip displays data generated by mpiP [17], a tool that instru-
ments MPI calls and writes out a summary file describing how
much time certain calls took to complete. It helps users find the
communication calls in their codes that are taking a disproportion-
ate amount of time.

This tool relies on linked-in instrumentation, so it does not need
any action type declarations. Instead, we simply use DPCL to run
the program. When the target finishes execution, the Collector in-
vokes a callback to find and read the output file (whose name is
based on the executable name, the number of processes, and the
process id—all information that is available within the Collector).
This file lists call sites for each instrumented MPI function, and for
each function, there is a per-process listing of the number of times
the function was called; the minimum, maximum, and mean exe-
cution time; and the percentage of time this MPI call accounts for
in the total communication time and total application running time.

The tool-specific callback function culls this information from
the file and transmits the per-call information to the Client for dis-
play (Figure 7).

Because this tool outputs no data until the program has finished
running, there is no need for breakpoints or dynamic instrumenta-
tion. Therefore, we initially considered implementing a Collector
for this tool that didn’t use DPCL. However, we quickly realized
that the new Collector would still need to start the parallel pro-
gram, detect when it had finished executing, identify the processes,
and serve source code to the Client. All of this is certainly feasible,
but we decided it would be simpler to take advantage of the func-
tionality that already exists in DPCL and not write a new version
of the Collector that didn’t use it. As a result, the tool-independent
part of the TGmpip Collector is the same as what TGmpx uses. The
disadvantage of this approach that it limits the Collector to running
on systems where DPCL is available, currently IBM and Linux.

An alternative implementation of this tool could use dynamic
instrumentation to avoid the need for linking the target program
with an instrumentation library. Such a tool could present a
continually-updated display as the program ran. Much of its func-
tionality could be implemented by dynamically inserting interval
timers at each call to an MPI function and keeping a count of the
calls.

5.3 Tool Development Time

One of our main goals for Tool Gear is to simplify the development
process so that ideas can be transformed rapidly into working, us-
able tools. Although the ease of implementing a tool with Tool
Gear is difficult to quantify, the time needed to build a tool is a
reasonable measure of our success.

Because TGmpx was developed concurrently with Tool Gear
itself, it is difficult to estimate how long it would have taken to
build TGmpx on top of the existing Tool Gear infrastructure.

For TGmpip, we needed to extend the Tool Gear infrastructure
somewhat to handle data from static instrumentation. This took

8

Figure 7: The TGmpip tool shows the cost of MPI communication calls. In this view, the user has sorted the display by Mean time column
(highlighted), so the source lines with data in that column have been pulled out of the rest of the code and arranged in increasing order. The
top three lines show the sum of the data in each column for the program, file, and function. Since the program consists of one function, all
three are the same in this case. Unlike the example in Figure 6, the cursor is not pointing to a cell that contains data, so the line at the bottom
of the window simply displays the file, function, and line where the cursor is pointing.

about a week, starting from the existing Tool Gear infrastructure
and the stand-alone text-based tool that gathers the data.

Perhaps the best indication of how long it takes to create a new
tool with Tool Gear is our experience with the interval timer tool.
This tool simply measures and reports the elapsed time from a Start
Timer call to a Stop Timer call. Users insert these calls using the
standard dynamic instrumentation model we have described. A
simplified version of the source code for the instrumentation ap-
pears in Figure 3. Implementing this tool took about half a day
and required no changes to the infrastructure. The process closely
followed the steps we have outlined in this paper.

We expect to further shorten the development time for tools by
streamlining the programming interfaces as we gain more experi-
ence with them. We will also investigate putting all of the tool
customization in the Collector, leaving a generic Client that tool
builders would not have to customize unless they were building en-
tirely new displays. In this scenario, the Collector’s initialization
function would describe to the Client not only actions and database
attributes but also the state diagrams, icons, and help text. The
Client already accepts a pathname for the Collector on its com-
mand line, so users can invoke different tools through the standard
Client by calling customized scripts. The advantage of putting all
the specialized code in the Collector is better encapsulation of the
tool-specific functionality, which should simplify the development
of tools.

5.4 Future Tools

We have begun work on implementing new kinds of tools with Tool
Gear. One of these is based on Umpire [16], which is a tool that
automatically checks MPI programs for a variety of interprocess
communication errors. This tool will display a list of suspected
errors, and the user will be able to click on an error to get a display
of the relevant source code. Although the error list will require a
new display, much of the other needed functionality already exists
in Tool Gear.

Another possible tool is a simple, lightweight memory leak de-
tector. Using dynamic instrumentation to track calls to memory al-
location and deallocation functions, this tool could keep track of the
total number bytes allocated and freed. If the totals didn’t match,
the tool could show where the imbalance occurred. Of course, good
memory analysis tools already exist, but they often require time-
consuming instrumentation steps, and they can greatly increase ex-

ecution time. This new tool would excel at quick checks with min-
imal increases in run time.

6 Current Status and Future Work

Source code for Tool Gear and the sample tools TGmpx and
TGmpip are currently available free of charge. (A Web site will
be given in the final paper.) DPCL currently runs only on IBM and
Linux systems, and the Linux port is experimental. However, IBM
has released this code as open source, and the Dyninst technology
on which it is based has been ported to many platforms. The Client,
on the other hand, is already quite portable. It has been tested on
IBM, Solaris, Linux, and Macintosh OS X workstations.

There are many areas for future improvements to Tool Gear,
some of which we have mentioned elsewhere in this paper. As
other developers begin to build tools with it, we will need to refine
and extend the programming interfaces and add new functionality,
especially for displaying data in different ways. We will also inves-
tigate extensions to the database. At a minimum, it should be able
to write out data in a form that can easily be read into a spread-
sheet program, so users can carry out more sophisticated data anal-
yses. We will also consider adding some analysis capabilities to the
database itself.

Our overall plan for Tool Gear is to discover what common
features tool developers need, and then to extend Tool Gear so that
developers can incorporate these features in their tools in a straight-
forward way. We will continue to take advantage of external open-
source software packages as appropriate and to develop our own
software components as needed.

With Tool Gear’s flexibility, ease of use, and sophisticated in-
terface features, we believe it has an exciting future as a foundation
on which many useful new tools can be built.

Acknowledgment

This work was performed under the auspices of the U.S. De-
partment of Energy by University of California Lawrence Liver-
more National Laboratory under contract number W-7405-Eng-48.
UCRL-JC-147901-EXT-ABS.

9

References

[1] DEPARTMENT OF COMPUTER AND INFORMATION SCI-
ENCE, UNIVERSITY OF OREGON. TAU User’s Guide. Eu-
gene, Oregon, 2000. http://www.acl.lanl.gov/
tau.

[2] DEROSE, L., HOOVER JR., T., AND HOLLINGSWORTH,
J. K. The Dynamic Probe Class Library—An infrastructure
for developing instrumentation for performance tools. In Pro-
ceedings 15th International Parallel and Distributed Process-
ing Symposium (April 2001).

[3] DEROSE, L., AND REED, D. A. SvPablo: A multi-language
architecture-independent performance analysis system. In
Proceedings of the International Conference on Parallel Pro-
cessing (September 1999).

[4] DEROSE, L. A., ZHANG, Y., AYDT, R., PANTANO, M.,
AND WHITMORE, S. SvPablo User’s Guide. Department
of Computer Science, University of Illinios, Urbana, Illinois,
November 2001. http://www-pablo.cs.uiuc.edu.

[5] GYLLENHAAL, J. C., HWU, W. W., AND RAU, B. R.
HMDES version 2 specification. Tech. Rep. IMPACT-96-
03, University of Illinois, Urbana, Illinois, 1996. http:
//www.crhc.uiuc.edu/~gyllen/.

[6] HOLLINGSWORTH, J. K., MILLER, B. P., AND CARGILLE,
J. Dynamic program instrumentation for scalable peformance
tools. In Proceedings of the Scalable High Performance Com-
puting Conference (May 1994), pp. 841–850.

[7] KOHL, J. A., AND CASAVANT, T. Use of PARADISE:
A meta-tool for visualizing parallel systems. In Proceed-
ings of the Fifth International Parallel Processing Symposium
(1991), pp. 561–567.

[8] MAY, J., AND BERMAN, F. Retargetability and extensibility
in a parallel debugger. Journal of Parallel and Distributed
Computing 35, 2 (June 1996), 142–155.

[9] MAY, J. M. MPX: Software for multiplexing hardware per-
formance counters in multithreaded programs. In Proceed-
ings 15th International Parallel and Distributed Processing
Symposium (April 2001).

[10] MILLER, B. P., CALLAGHAN, M. D., CARGILLE, J. M.,
HOLLINGSWORTH, J. K., IRVIN, R. B., KARAVANIC,
K. L., KUNCHITHAPADAM, K., AND NEWHALL, T. The
Paradyn parallel performance measurement tools. IEEE Com-
puter 28, 11 (November 1995), 37–46.

[11] MOHR, B., BROWN, D., AND MALONEY, A. TAU: A
portable parallel program analysis environment for pC++.
In Proceedings of CONPAR94—VAPP VI (September 1994),
pp. 29–40.

[12] PARADYN PROJECT. Paradyn Parallel Performance Tools
User’s Guide. Computer Science Department, University of
Wisconsin, Madison, Wisconsin, January 2002. http://
www.cs.wisc.edu/paradyn/.

[13] SOCHA, D., BAILEY, M. L., AND NOTKIN, D. Voyeur:
Graphical views of parallel programs. Proceedings of the
ACM SIGPLAN/SIGOPS Workshop on Parallel and Dis-
tributed Debugging, published in ACM SIGPLAN NOTICES
24, 1 (January 1989), 206–215.

[14] STASKO, J. T., AND KRAEMER, E. A methodology for
building application-specific visualizations of parallel pro-
grams. Journal of Parallel and Distributed Computing 18,
2 (June 1993), 258–264.

[15] TROLLTECH. Qt Reference Documentation. http://doc.
trolltech.com.

[16] VETTER, J. S., AND DE SUPINSKI, B. R. Dynamic soft-
ware testing of MPI applications with Umpire. In Proceed-
ings SC2000 (November 2000).

[17] VETTER, J. S., AND MCCRACKEN, M. O. Statistical scala-
bility analysis of communication operations in distributed ap-
plications. In Eighth ACM SIGPLAN Symposium on Princi-
ples and Practices of Parallel Programming (June 2001).

10

